
Using Fluke MET/CAL® to Implement a Flexible

Measurement Driver Model with Expanded Measurement

Uncertainties, Error Checking, and Standard Flexibility

Presented by

Michael Schwartz
Cal Lab Solutions/Cal Lab Magazine

Software Is An Investment
• If you develop it in house, it costs man hours.

• If you purchase it, it costs dollars.

Software Has a Life Span
• At some point, it will have to be re-written (re-factored).

• Update \ Change Standards

• Comply with New Regulatory Requirements

• Add New Features

Programming Fundamentals
• Every line of code you write is a line of code you have to

support & debug.

• So, we need to do more with less (Code).

• “Better, Cheaper, Faster”

Introduction

The Problem

• First we write ONE procedure.

• Then we copy that procedure &

create TWO.

• Then we copy one of them &

create THREE.

• Pretty soon we have

ONE HUNDRED or more.

• Now we need to change one thing

in more than 100 procedures.

• And we realize we are spending

more time supporting our

procedures than writing them.

Support

The Solution --- Reusable Code

To work “Better, Cheaper, Faster,”

we need less code.

To do that, we need reuse of code.

To do that, we need a modular

design.

Primary

Support

Main Calibration Procedures

Call Reusable

Code

In This MET/CAL Sample

What is Object Orientated Programming?

Abstract Class Pattern – Provides an interface for

creating families of related or dependent objects without
specifying their concrete class or implementation*.

How the Abstract Class Pattern solves the
standard flexibility problems

How We Implement a Hybrid Abstract Factory
Pattern in MET/CAL® (a non-OOP language).

 * E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, p. 87, 1995.

The Object Oriented Programming Paradigm

OOP allows the programmer to create a simple abstract top
level layer of code that interfaces with the lower levels (i.e.
objects) which become more specific handling the exact details.

We do not want to limit this procedure to just a Fluke 5520A.

We want to be able to use any DC Voltage source--anyone
that supports Source.Volts.DC.

Example MET/CAL® Procedure

#===== Sample Test Point 1 ============

 4.001 5520 1.0000V S 2W

 4.002 TARGET -m

 4.003 IEEE Read?[i]

 4.004 MEMCX V 0.0001U

Example 1. Sample Test Point 1.

In this example, we demonstrate how to

implement an Abstract Class Factory pattern

using MET/CAL.

#===== Sample Test Point 2 ============

 4.001 MATH S[30]="Source.Volts.DC Volts= 1"

 4.002 CALL My Config Sub

 4.003 MATH L[1]=Fld(S[31],2,"VoltsUnc=")

 4.004 MATH MEM=Fld(S[31],2,"Volts=")

 4.005 TSET UUT_Res= 0.0001

 4.006 ACC V L1U

 4.007 TARGET -m

 4.008 IEEE Read?[i]

 4.009 MEMCX V 0.0001U

Example 2. Sample Test Point 2.

 In our objective model we remove the 5520 FSC

and replace it with an “iSource.Volts.DC” with a Set Parameter value

of “Volts= 1” (Line 4.001).

 Then we call the “My Config Sub” (our Abstract Class Pattern);

 This will select the specific Standard that will generate 1V DC.

 Lines 4.003 – 4.006 perform additional steps the 5520 FCS did for us:

 1) 4.003 Get the Measurement Uncertainty

 2) 4.004 Get the Set Value for 1Volt DC

 3) 4.005 Set the Resolution of the Test

 4) 4.006 Set up the ACC in place of the 5520 FSC

#====== My Config Sub Sample Code ===

 4.001 LABEL VoltsDC

 4.002 JMPL VoltsDC_Conn Find(S[30],"Connect",1)>0

 4.003 JMPL VoltsDC_Source Find(S[30],"Source.Volts.DC",1)>0

 4.004 DISP Error Calling Sub

 4.005 END

#==

 4.006 LABEL VoltsDC_Conn

 4.007 DISP Connect the Fluke 5520 to the UUT as Follows;

 4.007 DISP [32] NORMAL HI <-----> V

 4.007 DISP [32] NORMAL LO <-----> COM

 4.008 END

#==

 4.009 LABEL VoltsDC_Source

 4.010 CALL CLSD-Source.Volts.DC (5520A Normal)

 4.011 END

Example 3. My Config Sub Sample Code.

In the “My Config Sub”

4.001 This section handles all calls to the Volt.DC

 Both Connection and Driver Calls.

4.006 The main does not know the Specific Standard

 So we handle the Specific Connection Message.

4.009 Now we can call any Source.volts.DC driver

 In this case, we are still using a Fluke 5520 Normal Output.

Our CLSD-Driver Model

Every driver must support the

following commands:

 Name – Returns the Name of

the STD and Connection Point

 Setup – Performs any required

Setup/Configuration Tasks

 Reset – Resets the Standard(s)

 OutputOff – Turns the Output

Off (Implemented on Sources

Only)

 <Metrology Method> –

Source.Volts.DC in this example

You must

have a well-

documented

programming

standard!

 Driver Standard

CLSD-Source.Volts.DC (5500A Normal) Fluke 5500 Volts Connection Post

CLSD-Source.Volts.DC (5570A Normal) Fluke 5520 Volts Connection Post

CLSD-Source.Volts.DC (5700A Normal) Fluke 5700 Volts Connection Post

CLSD-Source.Volts.DC (5720A Normal) Fluke 5720 Volts Connection Post

Table 1. Examples of interchangeable drivers with this paper.

Now We Make a Series of Interchangeable Drivers

Main Config 5500

5520

5700

5720

Now, our single main procedure is locked.

Config handles what specific standard we are

using.

The standards are all interchangeable.

Error Checking in the Drivers

Example 4. Source.Volts.DC 5520 Normal.

#====== Source.Volts.DC 5520 Normal =====================================

 1.024 LABEL Source.Volts.DC

Get the Voltage

 1.025 MATH L[1]=Fld(S[30],2,"Volts=")

Error Check the Values

 1.026 IF Abs(L[1]>1000)

 1.027 DISP Error [L1] Volts is Out of the Fluke 5500's Range

 1.028 END

 1.029 ENDIF

Setup The Standard

 1.030 MATH MEM=L[1]

 1.031 5500 V S 2W

Measurement Uncertainties & Additional Contributors

Example 4. Source.Volts.DC 5520 Normal.

#====== Source.Volts.DC 5520 Normal =====================================

Calculate the Uncertainties

 1.028 MATH L[11]=ACCV("Fluke 5520A","Volts", MEM)

 1.029 MATH S[31]= " Value= " & MEM

 1.030 MATH S[31]=S[31]& " Unc= " & L[11]

 1.031 MATH S[31]=S[31]& " Volts= " & MEM

 1.032 MATH S[31]=S[31]& " VoltsUnc= " &L[11]

Standard Resolution

 1.033 IF L[1]<330e-3

 1.034 MATH L[31] = .1e-6

 1.035 ELSEIF L[1]<3.30

 1.036 MATH L[31] = 1e-6

 1.037 ELSEIF L[1]<33.0

 1.038 MATH L[31] = 10e-6

 1.039 ELSEIF L[1]<330

 1.040 MATH L[31] = 100e-6

 1.041 ELSE

 1.042 MATH L[31] = 1000e-6

 1.043 ENDIF

 1.044 MATH L[31]=L[31]/2/Sqrt(3)

 1.045 TSET U7 = [L31]

Standard Traceability (Assuming 4 to 1 or Better)

 1.046 MATH L[31]=L[11]*.25

 1.047 TSET U7 = [L31]

Hello Polymorphism

Driver Standard

CLSD-Source.Volts.DC (5500 Normal & 3458A) Fluke 5500 Volts Connection Post monitored and

corrected with an HP/Agilent 3458A.

Table 2. Examples demonstrating Polymorphism drivers with this paper.

The Problem: Fluke 5500 is not accurate enough!

Main Config

5500

5520

5700

5720

5500

3458

Check the Input Terminals

#=======================================

 1.031 LABEL SetInput

 1.032 IEEE [@3458][Term LF]TERM?[I]

 1.033 IF MEM!=1

 1.034 DISP Set the 3458A Front\Rear Input to Front

 1.035 JMPL SetInput

 1.036 ENDIF

Setup The Standard

 1.037 MATH MEM=L[1]

 1.038 5500 V S 2W

Settle the Reading

 1.039 IEEE [@3458]FUNC DCV

 1.040 IEEE [@3458]NDIG 8

 1.041 IEEE [@3458]NPLC 200

 1.042 IEEE [@3458][Term LF][T0][i]

 1.043 IEEE [@3458][Term LF][T0][i]

 1.044 IEEE [Term OFF]

Calculate the Uncertainties

#=================================

 1.045 MATH L[11]=ACCV("HP 3458A","Volts E", MEM)

 1.046 MATH S[31]= " Value= " & MEM

 1.047 MATH S[31]=S[31]& " Unc= " & L[11]

 1.048 MATH S[31]=S[31]& " Volts= " & L[1]

 1.049 MATH S[31]=S[31]& " VoltsUnc= " & (L[11]+(MEM-L[1]))

Example 5. Source.Volts.DC 3458A 5520 Normal.

Conclusion

Though MET/CAL® is not by design an Object

Oriented Programming Language like Microsoft .Net

and Java, we can still take full advantage of the

architectural principles, design patterns and other

fundamentals of OOP to write more robust,

innovative and fault tolerant procedures.

A packet of samples can be found online at

http://www.callabsolutions.com.

Questions?

Michael Schwartz

Owner/Publisher

Cal Lab Solutions/Cal Lab Magazine

E: Mschwartz@callabsolutions.com

T: (303) 317-6670

Contact

Information

