Rethinking the Flexible Standards Paradigm

Speaker/Author: Michael L. Schwartz
Cal Lab Solutions
PO Box 111113, Aurora CO 80042 US
T: 303-317-6670 | F: 303-317-5295
Email: MSchwartz@CalLabSolutions.com

Abstract: In many of today’s software projects, developeesdrallenged with the task of
designing interchangeable standards architecttwdheir metrology based applications.
Currently, many developers see an oscilloscop@ asailloscope and believe that all
oscilloscopes are created equal, and are therefierehangeable; at the same time, any
oscilloscope manufacturer will tell you their oszsicope is different with special features
requiring non-standardized sets of commands toampht those special and specific features.
Consequently, developers write their code to imglenspecial and unique features in what was
designed to be a generic driver. Cal Lab Soluttonk a step back to re-evaluate the problem
and all the solutions. We came up with a softwBegign methodology that allows the user to
incorporate non-standardized features of complexdstrds while maintaining a highly flexible
interchangeable instrumentation model. This papkdemonstrate how a process centric
model allows greater flexibility over the generanomand centric model.

l|Page

Overview

Software design at its core is an abstraction a@itge Software projects succeed or fail based on
the architecture and how the developers approachribblem they are designed to solve. A
software design based on a solid abstraction i ilely to succeed having an extended
lifespan, reusability, and flexibility; whereas adbabstraction most likely will result in a poor
software solution leading to a weak and fragilalffijproduct. This paradigm holds true for the
metrology related software solutions.

Designing flexible and robust software solutionagseasy task. There are countless hours spent
at the drawing board. Ideas are vetted; modeldesgned, evaluated, and thrown away.
Through a lot of trial and error, a solid desigpegrs. And when the design appears, it is so
elegant it looks intuitive; and you are left askyayrself why we didn’t do this in the first place.

Through this process, we stumbled upon a desigrehtbdt solves the problem on complex
instrumentation, as well as functions cross-platfdoy making a slight alteration to the
paradigm behind the underling concept of flexiliendards.

Background

For years | have attended conference reading papéra/atched presentations rehashing the
same old interchangeable standards paradigm. f@ebmamic changes in the design of
instrumentation, the industry still thinks of equient and flexibility in terms of equipment
classification, as if all instruments fall neathto some form of generalization. Much of the
industry’s automation software is based on thesemptions; idiosyncrasies of the equipment
classification type are written into the callingdeg limiting the flexibility of the software.

The assumption that an instrument will fall intoreokind of
general classification is flawed; and history destoates how
problematic this assumption can be. For examphena came into
calibration in the late 1980’s we had a DC Volt&andard, an AC
Voltage Standard, and a set of standard resisfiarday, all of
those instruments are wrapped up into one instrucaied a
multi-function calibrator. Looking at the histasicevolution of
instruments in general, as an instrument peakse@sorement
accuracy, manufacturers start adding capabilitrelsiastruments
then morph into something else, creating entirely mstruments.

With today’s increased computing power, Moore’s Etalowed
products to morph and hybridize at an ever increpgace. Today
we have oscilloscopes with a built-in arbitrary wiorm generator, hand-held digital
multimeters that output current and pulses, ana egeilloscopes with fully functional spectrum
analyzers built in. And this is just the beginding

2|Page

Built-in Complexity

Each time an instrument adds capabilities, it iases its operational complexity. This leads to
increased complexity in the instrument’s remoteraff@en command structure. This forces
developers to write wrappers, patches and Band-Addsng unwanted complexity to the
software.

Another change in complexity we are seeing is e@dbmmunication mechanisms. For more
than two decades, GPIB has been the dominate madiachfor communication. Today, many
instruments have several options with it comestaraunication, each with its own level of
complexity.

Modular Instruments

We are also starting to see a larger number of taoghstruments. In the not too distant future,
they will become a predominate part of the instrotagon we will be supporting. Tomorrow’s
instruments will be a conglomeration of the sub-ponents, assembled in the modular hardware
section, and designed to solve a specific set @sorement problems. Manufacturers are
already offering built to order configurations astruments, but a modular architecture gives
them much greater flexibility.

Traditional Instrument Virtual Instrument

Proprietary

Processar, 05 FC Processor, D3

User Softaarn
Firmwarg
| Bus] D
1 1
Fixed User I]Lifien:d
Timing and Measurement Interface Timing and Modular Intart
Cantrol Subsystem Control Hardware LN
Poweer Supply Shared Power Supply
GPIE, LAN, USEB Connectivity GPIB, LAN, USE Connectivity

Comparison of traditional and virtual instrumentation architectures from a National
Instruments’ white paperz. Both share similar hardware components; the primary difference
between the architectures is where the software resides and whether it is user-accessible.

Modular instrumentation provides manufacturers witme very distinct advantages: it allows
them to right-size an instrument to the customengjue requirements; manufacturers are better
able to balance cost vs. measurement requirementigreviraditional instruments would
typically have more features than required for mapplications; it allows them to go to market
faster, because the underlying hardware is flextdan be easily configured and reconfigured,;

3|Page

then, user defined interface allows the manufactiar customize the instrument to the
measurement needs.

The impact of this migration to modular instrumeiaia on metrology will be just as significant,
causing some major disruptions in many of the saféwsystems we are currently using. The
first major disruption will be that many manufa&ts are not investing in the development of a
command language to control the instrument. Matufars instead rely on software drivers in
order to communicate with the instrument; becahseetis no command language, software
solutions designed using a database of commantieaibnger work. Developers will then
have to create a patch to their software in ordl@otmmunicate with the manufacturer’s drivers.

Where the Model Breaks

The examples cited above demonstrate some weaknéngsarchitectural designs being
implemented in several software solutions curreatifthe market. Despite solving many of
today’'s measurement problems, without extensiveitesy solutions using the generic command
centric model will become more and more difficaltsupport and maintain as the underlying
design principles of instruments changes.

Concerns arise when looking at many of today’siffllexstandard models. First, as complexity

of the command syntax increases, a simple modekefting a value into a formatted string will
be problematic as instruments morph. This modidahe fundamental flexibility required to
adjust for programmatical variations in the instamntis implementation. One prime example of

a complex instrument available today is the AgileA#40A. This instrument has several modes
of operation, and thus the complexity of a simglget now takes several commands and queries.

Another concern is error checking and error hagdliwhen a simple command syntax
replacement is being used, there is often no imergation of error handling. Each instrument
has drastically different implementations of enandling so it becomes very difficult to
compress into simple commands. Furthermore, preper checking should include, at a
minimum, both range checking for measurement vatidain addition to verification the
instrument is properly configured with no configiima errors. These errors must also be passed
back to the calling environment so they can be lemhproperly.

Eventually the command replacement model will beeainsolete, as instruments move from a
command based control model to a driver based matkeinstruments change to modular based
instruments, very complex instruments using desktopputer power with Distributed
Component Object Models (DCOM) command languagdswwilonger dominate instrument
control. Program control of instruments will bearrery specific and tightly coupled to the
drivers provided by the manufacturer. Solutiongh@market today will require a middleware
tool or a patch to bridge the incompatibility.

4|Page

Rethinking the Paradigm

First we need to rethink the concept of instrumetgrchangeability. With instruments
increasingly hybridized to increase their featutks,concept of a generic instrument class
driver, with commands stored in data, no longecfioms. This presented a problem and forced
us back to the drawing board, where we threw elergtout and rethought the model from
scratch. We discovered a driver model that allagigreater flexibility, one that can withstand
the changes in technology and hybridization ofrureentation. By understanding and utilizing
the principles of Object Oriented Programming (O&®)e broke our software structure down
into core reusable pieces of code. When we loakeah instrument from the perspective of a
collection of metrology functions, not a deviceayme discovered that model was very solid
and very flexiblé. And keeping with OOP, our abstraction matcheditse allowing us to

mimic in software what manufacturers were doingandware. Because when you think about
it, they are just adding measurement capability.

Measurement Process Model™

We came up with the Measurement Process Model™ghnddlows us to create a series of very
small drivers for any given instrument and provglanstandard methodology of assembling
them into a hybridized instrument driver. As shawthe figure below, the Get Measurement
Process allows the calling procedure to lateradkytae driver if it supports the measurement
functions it needs. If the driver does not suppamieasurement function, the calling procedure
is not able to use that instrument.

Agilent E444xA Calling Code

Get Measurement Process +—>

A Only Calls what it Needs

Measure.Harmonics
Has an Interface for each

Measurement Process

Measure.RF.Power

Measure.SingleSideBandPhaseNoise

Measure.Frequency

The abstraction shows that each of the measurefiongettons in the driver represents a contract

defining the specific operations and interactiotwlaen the calling procedure and the instrument
driver. The calling procedure explicitly knows htovuse the measurement driver though it has
no idea of the specific implementation.

When you look at it from the calling code, you e the power of this new paradigm by
changing our focus from an instrument classificatiasis to a measurement process model. We
gain greater flexibility by not limiting standardlsstitution to a single instruments classification.

5|Page

Now we can use a wider range of instruments capabiaplementing the required
measurement process.

Get Measurement Process = Agilent E444xA

Calling Proc 1
+ Measure.Frequency

Knows it need a
Measure.Frequency

, Get Measurement Process = Agilent 53132A
Does not know who will

Measure the frequency t ' Measure Frequency

A

Get Measurement Process Tektronix TDS5000

*—» Measure.Frequency

Get Measurement Process Fluke 8845A

f—' Measure.Frequency

The calling procedure has passed complete control of the measurement process to the driver. This provides the
greatest flexibility in instrumentation, drivers can now become instrument specific and are able to implement
processes that allow them to take full advantage of their specific measurement operations.

Cross Platform Compatibility

In theory, when a concept is sound, it will workniiltiple software tools and cross-platform.
So far, the implementation has been proven to berebust in the Microsoft®.Net and Fluke’s
MET/CAL® platforms.

Microsoft® .Net Implementation

The Microsoft® .Net model proves most flexible,cgnt is an Object Oriented Programming
environment, allowing us to take full advantagdeaftures like interface and inheritance.
Microsoft® .Net has a very structured interface efthinelps the developer fully implement an
interface in a driver, taking advantage of the poarel flexibility of the Measurement Process
Model™.

The sample interface below becomes the contraatdeet the calling code and the
implementation in the driver. Notice the interfaseery simple and very abstract. This
becomes the contract between the calling proceghatiehe driver. The calling procedure can
only call the functions defined in the interfaceldhe driver must implement every one of the
functions.

PublicInterfaceiDC_Volt_Meter
Inheritsilnstrument

6|Page

' Meter Operations
SubReset()

' Meter Measurements
FunctionMeasureDCVolt®yVal ExpectedValué\s Doublg As Double

' Instrument Uncertainties
FunctionGetinstUncByVal ValueAs Doublg As Double

EndInterface

The driver below must implement the interface perd¢ontract. You can see how the HP
34401A Driver implements several interfaces inahgdihe interface listed above.

PublicClassHP_34401A
InheritsCLS_DriveBaseClass

ImplementsDC_Volt_Meter
ImplementsAC_Volt_Meter
ImplementsDC_Current_Meter
ImplementsAC_Current_Meter
Implementd2W_Ohm_Meter
Implements4W_Ohm_Meter
PublicFunctionMeasureDCVolt®yVal ExpectedValué\s Double _
As DoublelmplementsDC_Meter.MeasureDCVolts
' Check the Routing Button
Me.CheckFrontTerm()

Me.Write("CONF:VOLT:DC AUTO,MIN")
Me.OPCY()

ReturnMe.ReadSettled()
EndFunction

Public FunctionGetinstUncByVal ValueAs Double
As DoublelmplementsDC_Meter.GetlnstUnc
‘Uncertainties Based on 1 Year Specifications
' Percent of Reading + Percent of Range

SelectCaseValue
Casels<=0.1
'0.0050 %of Reading + 0.0035 %of Range
Return(Value * 0.00005) + (0.1 * 0.000035)
Casels<=1
'0.0040 %of Reading + 0.0007 %of Range
Return(Value * 0.00004) + (1 * 0.000007)
Casels <= 10
'0.0040 %of Reading + 0.0007 %of Range
Return(Value * 0.00004) + (10 * 0.000007)
Casels <= 100
'0.000045 %of Reading + 0.000006 %of Range
Return(Value * 0.000045) + (100 * 0.000006)
Casels <= 1000
'0.0045 %of Reading + 0.0010 %of Range
Return(Value * 0.000045) + (1000 * 0.00001)
CaseElse
Return4.99E+39
EndSelect

Not shown in these programming samples is the oogkementing the Get Measurement
Process. Microsoft® .Net includes a feature caRedlection, allowing the code to interrogate
on object extracting its interfaces. However, um imnplementations we have explicitly written
the Get Measurement Process function.

7|1Page

Fluke MET/CAL® Implementation

Implementing this Measurement Process Model™ in KIEAL® is a little more difficult, but

not impossible. The Fluke MET/CAL® platform is reost Object Oriented Programming
environment, so the programmer will have to pagetattention to what he or she is doing to
insure each driver implement is 100% of the inte¥faThe interface will then have to be defined
and maintained in support documentation.

A Sub Procedure in MET/CAL® is a script, so it cahhe instantiated, used and then unloaded.
It has limited support for local variables as vadlIstatic variables and data storage. But, none of
these limitations prevent us from implementing Measurement Process Model™.

Notice in the MET/CAL® driver below, we are suppogd all the key features of the interface
above. We have a specific call for the reset conthes well as the Measure.Volts.DC. There
are only a few specific differences in the impletagon. In the VB.Net implementation above,
we perform two calls—one for the reading and theepfor the uncertainty—whereas in the
MET/CAL® implementation, we do it all in a singleeasurement call and automatically return
the uncertainties.

Cal Lab Solutions MET/CAL Procedure
INSTRUMENT: CLSD-Measure.Volts.DC (34401A Front)
DATE: 2010-12-01 15:24:57

AUTHOR: Cal Lab Solutions

REVISION: $Revision: 5 $

ADJUSTMENT THRESHOLD: 70%
NUMBER OF TESTS: 4
NUMBER OF LINES: 127

STEP FSC RANGE NOMINAL TOLERANCE MOD1 MOD2 3 4 CON
1.001 JMPL Reset (find(S[30], "Reset",1)>0)

1.002 JMPL Measure.Volts.DC (find(J[3Measure.Volts.DC",1)>0)

1.003 DISP Error Calling the Procedure..
1.004 END
1.005 EVAL CLS

2.004 LABEL Reset

2.005 IEEE [@34401]*RST[D299]*OPC?[il]
2.006 JMPL End

2.007 EVAL CLS

#
#

4.001 LABEL Measure.Volts.DC
Set the Defaults
Get the Volts

4.002 IF (Find(S[30],"Volts=",1)>0)
4.003 MATH L[11]=Sub(S[30],find(S[30], bits=",1),1€3)
4.004 ELSE

4.005 DISP Error: Expected Voltage reeghi

4.005 DISP CLSD-Measure.Volts.DC (344@rAnt)
4.006 MATH S[31]="Value= 99e39 Unc=IIEM=99e39
4.007 END

8|Page

4.008 ENDIF

Check Range
4.009 IF L[11]>1.1e3
4.010 DISP Error: Voltage exceeds migtets.
4.010 DISP CLSD-Measure.Volts.DC (344@raAnt)
4.011 MATH S[31]="Value= 99e39 Unc=MIEM=99e39
4.012 END
4.013 ENDIF

Check the Input Terminals
4.014 LABEL Setinput

4.015 |IEEE [@34401]ROUT-TERM?[I$]

4.016 IF ZCMPI(MEM2, "REAR")

4.017 DISP Set the 34401A Front\Reautrip Front
4.018 JMPL Setinput

4.019 ENDIF

Configure the Input

H

4.020 IEEE [@34401]CONF:VOLT:DC [L11],Mf*OPC?[il]

Settle the Reading

4.021 |IEEE [@34401]READ?[I]
4.022 |EEE [@34401]READ?[I]
4.023 |IEEE [@34401]READ?[I]

4.024 IF abs(MEM)>1e30

If overranged then go to AutoRange

4.025 IEEE [@34401]CONF:VOLT:DC AUTO,MIMOPC?[i!]
4.026 |IEEE [@34401]READ?[I]

4.027 |IEEE [@34401]READ?[I]

4.028 IEEE [@34401]READ?[I]

4.029 ENDIF

Set Uncertainties

#:
H

4.030 LABEL SetTol

4.031 MATH L[1]=ACCV("HP 34401A","Volts"MEM)

4.032 MATH S[31]="Value= "& MEM &" Unc2&L[1]

4.033 MATH S[31]=S[31]&"Volts= "& MEM &"VoltsUnc= "&L[1]

4.049 LABEL End
4.050 END

Note that our MET/CAL® implementation only implentea single measurement process at a
time. We did this because scripting languagesrneceery cumbersome to debug as they
increase in complexity. Also notice at the topha procedure we are at revision 5, meaning it
only took five edits to write, test, and fully depthis code.

9|Page

Conclusion

Though it seems obvious and appears to be a vaplesicourse correction, in hindsight the
Measurement Process Model™ presents a very inivavagiproach to solving the flexible
standards problem. The fundamental underlying €piis simple: write the code you need as
you need it, and then add it to the instrumentedrafter testing. We’ve shown fallibilities of the
instrument classification driver model and how Haraative method can make our code run
more efficiently.

History has shown us the natural evolution of haneywhow manufacturers will continue to add
measurement functionality to gain a competitiveeedjewer computers, modular instruments,
and communication innovations will repeatedly oradle our implementations and software
solutions. We can choose to patch them each timserply rethink the paradigm. In the end,
the instrumentation is changing, and software gmstwill have to change to keep pace.

References

1. “Moore’s Law and Intel Innovation,”
<http://www.intel.com/about/companyinfo/museum/dits/moore.htm > (accessed
March 12, 2012).

2. “Understanding a Modular Instrumentation SystemAotomated Test,” National
Instruments, <http://zone.ni.com/devzone/cda/tid/pa26> (accessed March 12, 2012).

3. Shalloway, Alan and Trott, Jamd3esign Patterns Explained, 2 ed. (Addison-Wesley,
2005).

4. Michael Schwartz, “Using Fluke MET/CAL® to Implemtem Flexible Measurement
Driver Model with Expanded Measurement Uncertagtierror Checking and Standard
Flexibility,” NCSLI 2012 Workshop & Symposium, Nahal Harbor, MD, August 21-
25, 2012.

10| Page

