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Abstract:  In many of today’s software projects, developers are challenged with the task of 
designing interchangeable standards architecture into their metrology based applications.  
Currently, many developers see an oscilloscope as an oscilloscope and believe that all 
oscilloscopes are created equal, and are therefore interchangeable; at the same time, any 
oscilloscope manufacturer will tell you their oscilloscope is different with special features 
requiring non-standardized sets of commands to implement those special and specific features. 
Consequently, developers write their code to implement special and unique features in what was 
designed to be a generic driver. Cal Lab Solutions took a step back to re-evaluate the problem 
and all the solutions.  We came up with a software design methodology that allows the user to 
incorporate non-standardized features of complex standards while maintaining a highly flexible 
interchangeable instrumentation model.  This paper will demonstrate how a process centric 
model allows greater flexibility over the generic command centric model. 
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 Overview 

Software design at its core is an abstraction of reality.  Software projects succeed or fail based on 
the architecture and how the developers approach the problem they are designed to solve.  A 
software design based on a solid abstraction is more likely to succeed having an extended 
lifespan, reusability, and flexibility; whereas a bad abstraction most likely will result in a poor 
software solution leading to a weak and fragile final product.  This paradigm holds true for the 
metrology related software solutions.   

Designing flexible and robust software solutions is no easy task.  There are countless hours spent 
at the drawing board.  Ideas are vetted; models are designed, evaluated, and thrown away.  
Through a lot of trial and error, a solid design appears.  And when the design appears, it is so 
elegant it looks intuitive; and you are left asking yourself why we didn’t do this in the first place.   

Through this process, we stumbled upon a design model that solves the problem on complex 
instrumentation, as well as functions cross-platform, by making a slight alteration to the 
paradigm behind the underling concept of flexible standards.   

Background 

For years I have attended conference reading papers and watched presentations rehashing the 
same old interchangeable standards paradigm.  Despite dynamic changes in the design of 
instrumentation, the industry still thinks of equipment and flexibility in terms of equipment 
classification, as if all instruments fall neatly into some form of generalization.  Much of the 
industry’s automation software is based on these assumptions; idiosyncrasies of the equipment 
classification type are written into the calling code, limiting the flexibility of the software. 

The assumption that an instrument will fall into some kind of 
general classification is flawed; and history demonstrates how 
problematic this assumption can be.  For example, when I came into 
calibration in the late 1980’s we had a DC Voltage Standard, an AC 
Voltage Standard, and a set of standard resistors.  Today, all of 
those instruments are wrapped up into one instrument called a 
multi-function calibrator.  Looking at the historical evolution of 
instruments in general, as an instrument peaks in measurement 
accuracy, manufacturers start adding capabilities and instruments 
then morph into something else, creating entirely new instruments.   

With today’s increased computing power, Moore’s Law1 allowed 
products to morph and hybridize at an ever increasing pace.  Today 
we have oscilloscopes with a built-in arbitrary waveform generator, hand-held digital 
multimeters that output current and pulses, and even oscilloscopes with fully functional spectrum 
analyzers built in.  And this is just the beginning!   
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Built-in Complexity 

Each time an instrument adds capabilities, it increases its operational complexity.  This leads to 
increased complexity in the instrument’s remote operation command structure.  This forces 
developers to write wrappers, patches and Band-Aids adding unwanted complexity to the 
software.   

Another change in complexity we are seeing is in the communication mechanisms.  For more 
than two decades, GPIB has been the dominate medium used for communication.  Today, many 
instruments have several options with it comes to communication, each with its own level of 
complexity.  

Modular Instruments 

We are also starting to see a larger number of modular instruments.  In the not too distant future, 
they will become a predominate part of the instrumentation we will be supporting.  Tomorrow’s 
instruments will be a conglomeration of the sub-components, assembled in the modular hardware 
section, and designed to solve a specific set of measurement problems.  Manufacturers are 
already offering built to order configurations of instruments, but a modular architecture gives 
them much greater flexibility.  

 

Comparison of traditional and virtual instrumentation architectures from a National 
Instruments’ white paper2. Both share similar hardware components; the primary difference 
between the architectures is where the software resides and whether it is user-accessible.  

Modular instrumentation provides manufacturers with some very distinct advantages:  it allows 
them to right-size an instrument to the customers’ unique requirements; manufacturers are better 
able to balance cost vs. measurement requirements—where traditional instruments would 
typically have more features than required for many applications; it allows them to go to market 
faster, because the underlying hardware is flexible—can be easily configured and reconfigured; 
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then,  user defined interface allows the manufacturer to customize the instrument to the 
measurement needs.   

The impact of this migration to modular instrumentation on metrology will be just as significant, 
causing some major disruptions in many of the software systems we are currently using.  The 
first major disruption will be that many manufacturers are not investing in the development of a 
command language to control the instrument.  Manufacturers instead rely on software drivers in 
order to communicate with the instrument; because there is no command language, software 
solutions designed using a database of commands will no longer work.  Developers will then 
have to create a patch to their software in order to communicate with the manufacturer’s drivers.  

Where the Model Breaks 

The examples cited above demonstrate some weakness in the architectural designs being 
implemented in several software solutions currently on the market.  Despite solving many of 
today’s measurement problems, without extensive rewrites, solutions using the generic command 
centric model will become more and more difficult to support and maintain as the underlying 
design principles of instruments changes.   

Concerns arise when looking at many of today’s flexible standard models.  First, as complexity 
of the command syntax increases, a simple model of inserting a value into a formatted string will 
be problematic as instruments morph.  This model lacks the fundamental flexibility required to 
adjust for programmatical variations in the instrument’s implementation.  One prime example of 
a complex instrument available today is the Agilent E4440A.  This instrument has several modes 
of operation, and thus the complexity of a simple reset now takes several commands and queries.   

Another concern is error checking and error handling.  When a simple command syntax 
replacement is being used, there is often no implementation of error handling.  Each instrument 
has drastically different implementations of error handling so it becomes very difficult to 
compress into simple commands.  Furthermore, proper error checking should include, at a 
minimum, both range checking for measurement validation, in addition to verification the 
instrument is properly configured with no configuration errors.  These errors must also be passed 
back to the calling environment so they can be handled properly.   

Eventually the command replacement model will become obsolete, as instruments move from a 
command based control model to a driver based model.  As instruments change to modular based 
instruments, very complex instruments using desktop computer power with Distributed 
Component Object Models (DCOM) command languages will no longer dominate instrument 
control.  Program control of instruments will become very specific and tightly coupled to the 
drivers provided by the manufacturer.  Solutions on the market today will require a middleware 
tool or a patch to bridge the incompatibility.     
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Rethinking the Paradigm 

First we need to rethink the concept of instrument interchangeability.  With instruments 
increasingly hybridized to increase their features, the concept of a generic instrument class 
driver, with commands stored in data, no longer functions.  This presented a problem and forced 
us back to the drawing board, where we threw everything out and rethought the model from 
scratch.  We discovered a driver model that allows us greater flexibility, one that can withstand 
the changes in technology and hybridization of instrumentation.  By understanding and utilizing 
the principles of Object Oriented Programming (OOP) 3, we broke our software structure down 
into core reusable pieces of code.  When we looked at an instrument from the perspective of a 
collection of metrology functions, not a device type, we discovered that model was very solid 
and very flexible4.  And keeping with OOP, our abstraction matched reality, allowing us to 
mimic in software what manufacturers were doing in hardware.  Because when you think about 
it, they are just adding measurement capability.  

Measurement Process Model™  

We came up with the Measurement Process Model™, which allows us to create a series of very 
small drivers for any given instrument and providing a standard methodology of assembling 
them into a hybridized instrument driver.  As shown in the figure below, the Get Measurement 
Process allows the calling procedure to laterally ask the driver if it supports the measurement 
functions it needs.  If the driver does not support a measurement function, the calling procedure 
is not able to use that instrument.   

  

The abstraction shows that each of the measurement functions in the driver represents a contract 
defining the specific operations and interaction between the calling procedure and the instrument 
driver.  The calling procedure explicitly knows how to use the measurement driver though it has 
no idea of the specific implementation.   

When you look at it from the calling code, you can see the power of this new paradigm by 
changing our focus from an instrument classification basis to a measurement process model.  We 
gain greater flexibility by not limiting standard substitution to a single instruments classification.  
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Now we can use a wider range of instruments capable of implementing the required 
measurement process.  

 

The calling procedure has passed complete control of the measurement process to the driver.  This provides the 
greatest flexibility in instrumentation, drivers can now become instrument specific and are able to implement 
processes that allow them to take full advantage of their specific measurement operations. 

Cross Platform Compatibility 

In theory, when a concept is sound, it will work in multiple software tools and cross-platform.  
So far, the implementation has been proven to be very robust in the Microsoft®.Net and Fluke’s 
MET/CAL® platforms.   

Microsoft® .Net Implementation 

The Microsoft® .Net model proves most flexible, since it is an Object Oriented Programming 
environment, allowing us to take full advantage of features like interface and inheritance.  
Microsoft® .Net has a very structured interface which helps the developer fully implement an 
interface in a driver, taking advantage of the power and flexibility of the Measurement Process 
Model™.   

The sample interface below becomes the contract between the calling code and the 
implementation in the driver.  Notice the interface is very simple and very abstract.  This 
becomes the contract between the calling procedure and the driver.  The calling procedure can 
only call the functions defined in the interface and the driver must implement every one of the 
functions. 

Public Interface iDC_Volt_Meter 
   Inherits iInstrument 
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   ' Meter Operations  
   Sub Reset() 
 
   ' Meter Measurements 
   Function MeasureDCVolts(ByVal ExpectedValue As Double) As Double 
 
   ' Instrument Uncertainties 
   Function GetInstUnc(ByVal Value As Double) As Double 
 
End Interface 

The driver below must implement the interface per the contract.  You can see how the HP 
34401A Driver implements several interfaces including the interface listed above.   

Public Class HP_34401A 
   Inherits CLS_DriveBaseClass 
 
   Implements iDC_Volt_Meter 
   Implements iAC_Volt_Meter 
   Implements iDC_Current_Meter 
   Implements iAC_Current_Meter 
   Implements i2W_Ohm_Meter 
   Implements i4W_Ohm_Meter 
………… 
   Public Function MeasureDCVolts(ByVal ExpectedValue As Double) _ 
                 As Double Implements iDC_Meter.MeasureDCVolts 
      ' Check the Routing Button 
      Me.CheckFrontTerm() 
 
      Me.Write("CONF:VOLT:DC AUTO,MIN") 
      Me.OPC() 
 
      Return Me.ReadSettled() 
   End Function 
 
Public Function GetInstUnc(ByVal Value As Double)  
                As Double Implements iDC_Meter.GetInstUnc 
      'Uncertainties Based on 1 Year Specifications 
      ' Percent of Reading + Percent of Range 
 
      Select Case Value 
         Case Is <= 0.1 
            '0.0050 %of Reading + 0.0035 %of Range 
            Return (Value * 0.00005) + (0.1 * 0.000035) 
         Case Is <= 1 
            '0.0040 %of Reading + 0.0007 %of Range 
            Return (Value * 0.00004) + (1 * 0.000007) 
         Case Is <= 10 
            '0.0040 %of Reading + 0.0007 %of Range 
            Return (Value * 0.00004) + (10 * 0.000007) 
         Case Is <= 100 
            '0.000045 %of Reading + 0.000006 %of Range 
            Return (Value * 0.000045) + (100 * 0.000006) 
         Case Is <= 1000 
            '0.0045 %of Reading + 0.0010 %of Range 
            Return (Value * 0.000045) + (1000 * 0.00001) 
         Case Else 
            Return 4.99E+39 
      End Select 
 

Not shown in these programming samples is the code implementing the Get Measurement 
Process.  Microsoft® .Net includes a feature called Reflection, allowing the code to interrogate 
on object extracting its interfaces.  However, in our implementations we have explicitly written 
the Get Measurement Process function. 
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Fluke MET/CAL® Implementation 

Implementing this Measurement Process Model™ in MET/CAL® is a little more difficult, but 
not impossible. The Fluke MET/CAL® platform is not an Object Oriented Programming 
environment, so the programmer will have to pay closer attention to what he or she is doing to 
insure each driver implement is 100% of the interface.  The interface will then have to be defined 
and maintained in support documentation.   

A Sub Procedure in MET/CAL® is a script, so it cannot be instantiated, used and then unloaded.  
It has limited support for local variables as well as static variables and data storage.  But, none of 
these limitations prevent us from implementing the Measurement Process Model™. 

Notice in the MET/CAL® driver below, we are supporting all the key features of the interface 
above.  We have a specific call for the reset command as well as the Measure.Volts.DC.  There 
are only a few specific differences in the implementation.  In the VB.Net implementation above, 
we perform two calls—one for the reading and the other for the uncertainty—whereas in the 
MET/CAL® implementation, we do it all in a single measurement call and automatically return 
the uncertainties.   

Cal Lab Solutions                                           MET/CAL Procedure 
============================================================================= 
INSTRUMENT:            CLSD-Measure.Volts.DC                    (34401A Front) 
DATE:                  2010-12-01 15:24:57 
AUTHOR:                Cal Lab Solutions 
REVISION:              $Revision: 5 $ 
ADJUSTMENT THRESHOLD:  70% 
NUMBER OF TESTS:       4 
NUMBER OF LINES:       127 
#============================================================================ 
 STEP    FSC    RANGE NOMINAL        TOLERANCE     MOD1        MOD2  3  4 CON 
  1.001  JMPL         Reset                         (find(S[30], "Reset",1)>0) 
  1.002  JMPL         Measure.Volts.DC   (find(S[30], "Measure.Volts.DC",1)>0) 
 
  1.003  DISP         Error Calling the Procedure.. 
  1.004  END 
  1.005  EVAL   CLS 
 
#============================================================================ 
  2.004  LABEL        Reset 
  2.005  IEEE         [@34401]*RST[D299]*OPC?[i!] 
  2.006  JMPL         End 
  2.007  EVAL   CLS 
 
#============================================================================ 
  4.001  LABEL        Measure.Volts.DC 
# Set the Defaults 
# Get the Volts 
  4.002  IF           (Find(S[30],"Volts=",1)>0) 
  4.003  MATH         L[11]=Sub(S[30],find(S[30],"Volts=",1),1e3) 
  4.004  ELSE 
  4.005  DISP         Error: Expected Voltage required. 
  4.005  DISP         CLSD-Measure.Volts.DC (34401A Front) 
  4.006  MATH         S[31]="Value= 99e39  Unc= 0";MEM=99e39 
  4.007  END 
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  4.008  ENDIF 
 
# Check Range 
  4.009  IF           L[11]>1.1e3 
  4.010  DISP         Error: Voltage exceeds meter limits. 
  4.010  DISP         CLSD-Measure.Volts.DC (34401A Front) 
  4.011  MATH         S[31]="Value= 99e39  Unc= 0";MEM=99e39 
  4.012  END 
  4.013  ENDIF 
 
# Check the Input Terminals 
#======================================= 
  4.014  LABEL        SetInput 
  4.015  IEEE         [@34401]ROUT:TERM?[I$] 
  4.016  IF           ZCMPI(MEM2, "REAR") 
  4.017  DISP         Set the 34401A Front\Rear Input to Front 
  4.018  JMPL         SetInput 
  4.019  ENDIF 
 
# Configure the Input 
#======================================= 
  4.020  IEEE         [@34401]CONF:VOLT:DC [L11],MIN;*OPC?[i!] 
 
# Settle the Reading 
  4.021  IEEE         [@34401]READ?[I] 
  4.022  IEEE         [@34401]READ?[I] 
  4.023  IEEE         [@34401]READ?[I] 
 
  4.024  IF           abs(MEM)>1e30 
# If overranged then go to AutoRange 
  4.025  IEEE         [@34401]CONF:VOLT:DC AUTO,MIN;*OPC?[i!] 
  4.026  IEEE         [@34401]READ?[I] 
  4.027  IEEE         [@34401]READ?[I] 
  4.028  IEEE         [@34401]READ?[I] 
  4.029  ENDIF 
 
# Set Uncertainties 
#================================= 
  4.030  LABEL        SetTol 
  4.031  MATH         L[1]=ACCV("HP 34401A","Volts", MEM) 
  4.032  MATH         S[31]="Value= "& MEM &" Unc= "&L[1] 
  4.033  MATH         S[31]=S[31]&"Volts= "& MEM &" VoltsUnc= "&L[1] 
 
………………………………………….. 
 
#================================= 
  4.049  LABEL        End 
  4.050  END 
 

 

Note that our MET/CAL® implementation only implements a single measurement process at a 
time.  We did this because scripting languages become very cumbersome to debug as they 
increase in complexity.  Also notice at the top of the procedure we are at revision 5, meaning it 
only took five edits to write, test, and fully debug this code.  
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Conclusion 

Though it seems obvious and appears to be a very simple course correction, in hindsight the 
Measurement Process Model™ presents a very innovative approach to solving the flexible 
standards problem.  The fundamental underlying concept is simple: write the code you need as 
you need it, and then add it to the instrument driver after testing.  We’ve shown fallibilities of the 
instrument classification driver model and how an alternative method can make our code run 
more efficiently.  

History has shown us the natural evolution of hardware; how manufacturers will continue to add 
measurement functionality to gain a competitive edge.  Newer computers, modular instruments, 
and communication innovations will repeatedly challenge our implementations and software 
solutions.  We can choose to patch them each time or simply rethink the paradigm.  In the end, 
the instrumentation is changing, and software solutions will have to change to keep pace. 
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