
1 | P a g e

Rethinking the Flexible Standards Paradigm

Speaker/Author: Michael L. Schwartz
Cal Lab Solutions

PO Box 111113, Aurora CO 80042 US
T: 303-317-6670 | F: 303-317-5295

Email: MSchwartz@CalLabSolutions.com

Abstract: In many of today’s software projects, developers are challenged with the task of
designing interchangeable standards architecture into their metrology based applications.
Currently, many developers see an oscilloscope as an oscilloscope and believe that all
oscilloscopes are created equal, and are therefore interchangeable; at the same time, any
oscilloscope manufacturer will tell you their oscilloscope is different with special features
requiring non-standardized sets of commands to implement those special and specific features.
Consequently, developers write their code to implement special and unique features in what was
designed to be a generic driver. Cal Lab Solutions took a step back to re-evaluate the problem
and all the solutions. We came up with a software design methodology that allows the user to
incorporate non-standardized features of complex standards while maintaining a highly flexible
interchangeable instrumentation model. This paper will demonstrate how a process centric
model allows greater flexibility over the generic command centric model.

2 | P a g e

 Overview

Software design at its core is an abstraction of reality. Software projects succeed or fail based on
the architecture and how the developers approach the problem they are designed to solve. A
software design based on a solid abstraction is more likely to succeed having an extended
lifespan, reusability, and flexibility; whereas a bad abstraction most likely will result in a poor
software solution leading to a weak and fragile final product. This paradigm holds true for the
metrology related software solutions.

Designing flexible and robust software solutions is no easy task. There are countless hours spent
at the drawing board. Ideas are vetted; models are designed, evaluated, and thrown away.
Through a lot of trial and error, a solid design appears. And when the design appears, it is so
elegant it looks intuitive; and you are left asking yourself why we didn’t do this in the first place.

Through this process, we stumbled upon a design model that solves the problem on complex
instrumentation, as well as functions cross-platform, by making a slight alteration to the
paradigm behind the underling concept of flexible standards.

Background

For years I have attended conference reading papers and watched presentations rehashing the
same old interchangeable standards paradigm. Despite dynamic changes in the design of
instrumentation, the industry still thinks of equipment and flexibility in terms of equipment
classification, as if all instruments fall neatly into some form of generalization. Much of the
industry’s automation software is based on these assumptions; idiosyncrasies of the equipment
classification type are written into the calling code, limiting the flexibility of the software.

The assumption that an instrument will fall into some kind of
general classification is flawed; and history demonstrates how
problematic this assumption can be. For example, when I came into
calibration in the late 1980’s we had a DC Voltage Standard, an AC
Voltage Standard, and a set of standard resistors. Today, all of
those instruments are wrapped up into one instrument called a
multi-function calibrator. Looking at the historical evolution of
instruments in general, as an instrument peaks in measurement
accuracy, manufacturers start adding capabilities and instruments
then morph into something else, creating entirely new instruments.

With today’s increased computing power, Moore’s Law1 allowed
products to morph and hybridize at an ever increasing pace. Today
we have oscilloscopes with a built-in arbitrary waveform generator, hand-held digital
multimeters that output current and pulses, and even oscilloscopes with fully functional spectrum
analyzers built in. And this is just the beginning!

3 | P a g e

Built-in Complexity

Each time an instrument adds capabilities, it increases its operational complexity. This leads to
increased complexity in the instrument’s remote operation command structure. This forces
developers to write wrappers, patches and Band-Aids adding unwanted complexity to the
software.

Another change in complexity we are seeing is in the communication mechanisms. For more
than two decades, GPIB has been the dominate medium used for communication. Today, many
instruments have several options with it comes to communication, each with its own level of
complexity.

Modular Instruments

We are also starting to see a larger number of modular instruments. In the not too distant future,
they will become a predominate part of the instrumentation we will be supporting. Tomorrow’s
instruments will be a conglomeration of the sub-components, assembled in the modular hardware
section, and designed to solve a specific set of measurement problems. Manufacturers are
already offering built to order configurations of instruments, but a modular architecture gives
them much greater flexibility.

Comparison of traditional and virtual instrumentation architectures from a National
Instruments’ white paper2. Both share similar hardware components; the primary difference
between the architectures is where the software resides and whether it is user-accessible.

Modular instrumentation provides manufacturers with some very distinct advantages: it allows
them to right-size an instrument to the customers’ unique requirements; manufacturers are better
able to balance cost vs. measurement requirements—where traditional instruments would
typically have more features than required for many applications; it allows them to go to market
faster, because the underlying hardware is flexible—can be easily configured and reconfigured;

4 | P a g e

then, user defined interface allows the manufacturer to customize the instrument to the
measurement needs.

The impact of this migration to modular instrumentation on metrology will be just as significant,
causing some major disruptions in many of the software systems we are currently using. The
first major disruption will be that many manufacturers are not investing in the development of a
command language to control the instrument. Manufacturers instead rely on software drivers in
order to communicate with the instrument; because there is no command language, software
solutions designed using a database of commands will no longer work. Developers will then
have to create a patch to their software in order to communicate with the manufacturer’s drivers.

Where the Model Breaks

The examples cited above demonstrate some weakness in the architectural designs being
implemented in several software solutions currently on the market. Despite solving many of
today’s measurement problems, without extensive rewrites, solutions using the generic command
centric model will become more and more difficult to support and maintain as the underlying
design principles of instruments changes.

Concerns arise when looking at many of today’s flexible standard models. First, as complexity
of the command syntax increases, a simple model of inserting a value into a formatted string will
be problematic as instruments morph. This model lacks the fundamental flexibility required to
adjust for programmatical variations in the instrument’s implementation. One prime example of
a complex instrument available today is the Agilent E4440A. This instrument has several modes
of operation, and thus the complexity of a simple reset now takes several commands and queries.

Another concern is error checking and error handling. When a simple command syntax
replacement is being used, there is often no implementation of error handling. Each instrument
has drastically different implementations of error handling so it becomes very difficult to
compress into simple commands. Furthermore, proper error checking should include, at a
minimum, both range checking for measurement validation, in addition to verification the
instrument is properly configured with no configuration errors. These errors must also be passed
back to the calling environment so they can be handled properly.

Eventually the command replacement model will become obsolete, as instruments move from a
command based control model to a driver based model. As instruments change to modular based
instruments, very complex instruments using desktop computer power with Distributed
Component Object Models (DCOM) command languages will no longer dominate instrument
control. Program control of instruments will become very specific and tightly coupled to the
drivers provided by the manufacturer. Solutions on the market today will require a middleware
tool or a patch to bridge the incompatibility.

5 | P a g e

Rethinking the Paradigm

First we need to rethink the concept of instrument interchangeability. With instruments
increasingly hybridized to increase their features, the concept of a generic instrument class
driver, with commands stored in data, no longer functions. This presented a problem and forced
us back to the drawing board, where we threw everything out and rethought the model from
scratch. We discovered a driver model that allows us greater flexibility, one that can withstand
the changes in technology and hybridization of instrumentation. By understanding and utilizing
the principles of Object Oriented Programming (OOP) 3, we broke our software structure down
into core reusable pieces of code. When we looked at an instrument from the perspective of a
collection of metrology functions, not a device type, we discovered that model was very solid
and very flexible4. And keeping with OOP, our abstraction matched reality, allowing us to
mimic in software what manufacturers were doing in hardware. Because when you think about
it, they are just adding measurement capability.

Measurement Process Model™

We came up with the Measurement Process Model™, which allows us to create a series of very
small drivers for any given instrument and providing a standard methodology of assembling
them into a hybridized instrument driver. As shown in the figure below, the Get Measurement
Process allows the calling procedure to laterally ask the driver if it supports the measurement
functions it needs. If the driver does not support a measurement function, the calling procedure
is not able to use that instrument.

The abstraction shows that each of the measurement functions in the driver represents a contract
defining the specific operations and interaction between the calling procedure and the instrument
driver. The calling procedure explicitly knows how to use the measurement driver though it has
no idea of the specific implementation.

When you look at it from the calling code, you can see the power of this new paradigm by
changing our focus from an instrument classification basis to a measurement process model. We
gain greater flexibility by not limiting standard substitution to a single instruments classification.

6 | P a g e

Now we can use a wider range of instruments capable of implementing the required
measurement process.

The calling procedure has passed complete control of the measurement process to the driver. This provides the
greatest flexibility in instrumentation, drivers can now become instrument specific and are able to implement
processes that allow them to take full advantage of their specific measurement operations.

Cross Platform Compatibility

In theory, when a concept is sound, it will work in multiple software tools and cross-platform.
So far, the implementation has been proven to be very robust in the Microsoft®.Net and Fluke’s
MET/CAL® platforms.

Microsoft® .Net Implementation

The Microsoft® .Net model proves most flexible, since it is an Object Oriented Programming
environment, allowing us to take full advantage of features like interface and inheritance.
Microsoft® .Net has a very structured interface which helps the developer fully implement an
interface in a driver, taking advantage of the power and flexibility of the Measurement Process
Model™.

The sample interface below becomes the contract between the calling code and the
implementation in the driver. Notice the interface is very simple and very abstract. This
becomes the contract between the calling procedure and the driver. The calling procedure can
only call the functions defined in the interface and the driver must implement every one of the
functions.

Public Interface iDC_Volt_Meter
 Inherits iInstrument

7 | P a g e

 ' Meter Operations
 Sub Reset()

 ' Meter Measurements
 Function MeasureDCVolts(ByVal ExpectedValue As Double) As Double

 ' Instrument Uncertainties
 Function GetInstUnc(ByVal Value As Double) As Double

End Interface

The driver below must implement the interface per the contract. You can see how the HP
34401A Driver implements several interfaces including the interface listed above.

Public Class HP_34401A
 Inherits CLS_DriveBaseClass

 Implements iDC_Volt_Meter
 Implements iAC_Volt_Meter
 Implements iDC_Current_Meter
 Implements iAC_Current_Meter
 Implements i2W_Ohm_Meter
 Implements i4W_Ohm_Meter
…………
 Public Function MeasureDCVolts(ByVal ExpectedValue As Double) _
 As Double Implements iDC_Meter.MeasureDCVolts
 ' Check the Routing Button
 Me.CheckFrontTerm()

 Me.Write("CONF:VOLT:DC AUTO,MIN")
 Me.OPC()

 Return Me.ReadSettled()
 End Function

Public Function GetInstUnc(ByVal Value As Double)
 As Double Implements iDC_Meter.GetInstUnc
 'Uncertainties Based on 1 Year Specifications
 ' Percent of Reading + Percent of Range

 Select Case Value
 Case Is <= 0.1
 '0.0050 %of Reading + 0.0035 %of Range
 Return (Value * 0.00005) + (0.1 * 0.000035)
 Case Is <= 1
 '0.0040 %of Reading + 0.0007 %of Range
 Return (Value * 0.00004) + (1 * 0.000007)
 Case Is <= 10
 '0.0040 %of Reading + 0.0007 %of Range
 Return (Value * 0.00004) + (10 * 0.000007)
 Case Is <= 100
 '0.000045 %of Reading + 0.000006 %of Range
 Return (Value * 0.000045) + (100 * 0.000006)
 Case Is <= 1000
 '0.0045 %of Reading + 0.0010 %of Range
 Return (Value * 0.000045) + (1000 * 0.00001)
 Case Else
 Return 4.99E+39
 End Select

Not shown in these programming samples is the code implementing the Get Measurement
Process. Microsoft® .Net includes a feature called Reflection, allowing the code to interrogate
on object extracting its interfaces. However, in our implementations we have explicitly written
the Get Measurement Process function.

8 | P a g e

Fluke MET/CAL® Implementation

Implementing this Measurement Process Model™ in MET/CAL® is a little more difficult, but
not impossible. The Fluke MET/CAL® platform is not an Object Oriented Programming
environment, so the programmer will have to pay closer attention to what he or she is doing to
insure each driver implement is 100% of the interface. The interface will then have to be defined
and maintained in support documentation.

A Sub Procedure in MET/CAL® is a script, so it cannot be instantiated, used and then unloaded.
It has limited support for local variables as well as static variables and data storage. But, none of
these limitations prevent us from implementing the Measurement Process Model™.

Notice in the MET/CAL® driver below, we are supporting all the key features of the interface
above. We have a specific call for the reset command as well as the Measure.Volts.DC. There
are only a few specific differences in the implementation. In the VB.Net implementation above,
we perform two calls—one for the reading and the other for the uncertainty—whereas in the
MET/CAL® implementation, we do it all in a single measurement call and automatically return
the uncertainties.

Cal Lab Solutions MET/CAL Procedure
===
INSTRUMENT: CLSD-Measure.Volts.DC (34401A Front)
DATE: 2010-12-01 15:24:57
AUTHOR: Cal Lab Solutions
REVISION: $Revision: 5 $
ADJUSTMENT THRESHOLD: 70%
NUMBER OF TESTS: 4
NUMBER OF LINES: 127
#==
 STEP FSC RANGE NOMINAL TOLERANCE MOD1 MOD2 3 4 CON
 1.001 JMPL Reset (find(S[30], "Reset",1)>0)
 1.002 JMPL Measure.Volts.DC (find(S[30], "Measure.Volts.DC",1)>0)

 1.003 DISP Error Calling the Procedure..
 1.004 END
 1.005 EVAL CLS

#==
 2.004 LABEL Reset
 2.005 IEEE [@34401]*RST[D299]*OPC?[i!]
 2.006 JMPL End
 2.007 EVAL CLS

#==
 4.001 LABEL Measure.Volts.DC
Set the Defaults
Get the Volts
 4.002 IF (Find(S[30],"Volts=",1)>0)
 4.003 MATH L[11]=Sub(S[30],find(S[30],"Volts=",1),1e3)
 4.004 ELSE
 4.005 DISP Error: Expected Voltage required.
 4.005 DISP CLSD-Measure.Volts.DC (34401A Front)
 4.006 MATH S[31]="Value= 99e39 Unc= 0";MEM=99e39
 4.007 END

9 | P a g e

 4.008 ENDIF

Check Range
 4.009 IF L[11]>1.1e3
 4.010 DISP Error: Voltage exceeds meter limits.
 4.010 DISP CLSD-Measure.Volts.DC (34401A Front)
 4.011 MATH S[31]="Value= 99e39 Unc= 0";MEM=99e39
 4.012 END
 4.013 ENDIF

Check the Input Terminals
#=======================================
 4.014 LABEL SetInput
 4.015 IEEE [@34401]ROUT:TERM?[I$]
 4.016 IF ZCMPI(MEM2, "REAR")
 4.017 DISP Set the 34401A Front\Rear Input to Front
 4.018 JMPL SetInput
 4.019 ENDIF

Configure the Input
#=======================================
 4.020 IEEE [@34401]CONF:VOLT:DC [L11],MIN;*OPC?[i!]

Settle the Reading
 4.021 IEEE [@34401]READ?[I]
 4.022 IEEE [@34401]READ?[I]
 4.023 IEEE [@34401]READ?[I]

 4.024 IF abs(MEM)>1e30
If overranged then go to AutoRange
 4.025 IEEE [@34401]CONF:VOLT:DC AUTO,MIN;*OPC?[i!]
 4.026 IEEE [@34401]READ?[I]
 4.027 IEEE [@34401]READ?[I]
 4.028 IEEE [@34401]READ?[I]
 4.029 ENDIF

Set Uncertainties
#=================================
 4.030 LABEL SetTol
 4.031 MATH L[1]=ACCV("HP 34401A","Volts", MEM)
 4.032 MATH S[31]="Value= "& MEM &" Unc= "&L[1]
 4.033 MATH S[31]=S[31]&"Volts= "& MEM &" VoltsUnc= "&L[1]

…………………………………………..

#=================================
 4.049 LABEL End
 4.050 END

Note that our MET/CAL® implementation only implements a single measurement process at a
time. We did this because scripting languages become very cumbersome to debug as they
increase in complexity. Also notice at the top of the procedure we are at revision 5, meaning it
only took five edits to write, test, and fully debug this code.

10 | P a g e

Conclusion

Though it seems obvious and appears to be a very simple course correction, in hindsight the
Measurement Process Model™ presents a very innovative approach to solving the flexible
standards problem. The fundamental underlying concept is simple: write the code you need as
you need it, and then add it to the instrument driver after testing. We’ve shown fallibilities of the
instrument classification driver model and how an alternative method can make our code run
more efficiently.

History has shown us the natural evolution of hardware; how manufacturers will continue to add
measurement functionality to gain a competitive edge. Newer computers, modular instruments,
and communication innovations will repeatedly challenge our implementations and software
solutions. We can choose to patch them each time or simply rethink the paradigm. In the end,
the instrumentation is changing, and software solutions will have to change to keep pace.

References

1. “Moore’s Law and Intel Innovation,”
<http://www.intel.com/about/companyinfo/museum/exhibits/moore.htm > (accessed
March 12, 2012).

2. “Understanding a Modular Instrumentation System for Automated Test,” National
Instruments, <http://zone.ni.com/devzone/cda/tut/p/id/4426> (accessed March 12, 2012).

3. Shalloway, Alan and Trott, James, Design Patterns Explained, 2 ed. (Addison-Wesley,
2005).

4. Michael Schwartz, “Using Fluke MET/CAL® to Implement a Flexible Measurement
Driver Model with Expanded Measurement Uncertainties, Error Checking and Standard
Flexibility,” NCSLI 2012 Workshop & Symposium, National Harbor, MD, August 21-
25, 2012.

