
2011 NCSL International Workshop and Symposium

Using Fluke MET/CAL® to Implement
a Flexible Measurement Driver Model

with Expanded Measurement Uncertainties
and Error Checking

Speaker/Author: Michael L. Schwartz
Cal Lab Solutions

PO Box 111113, Aurora CO 80042 US
T: 303-317-6670 | F: 303-317-5295

Email: MSchwartz@CalLabSolutions.com

Learning Objectives: Programmers, and especially MET/CAL® programmers, will gain
valuable knowledge and insight on how to structure their procedures to provide easier
interchangeability of standards and incorporate measurement uncertainties. This driver based
model incorporates the principals of object oriented programming, and facilitates faster
procedure development, greater flexibility in standards, with lower support overhead.

Abstract: Writing one or two automated procedures is easy; however, automating an entire
calibration lab is not an easy undertaking. Even with today’s software tools built specifically for
metrology, a significant effort must to be put into designing an architecture that will foster the
reuse of code, flexibility of standards and incorporate expanded measurement uncertainties.
Companies and/or developers who skip this crucial step are quickly overwhelmed with rework
that ultimately hinders long-term productivity.

After more than 15 years of MET/CAL® procedure development trial and error, we believe we
have found the balance between productivity and architecture. This paper outlines the structure
and development methodologies we use to write more robust code, with a greater emphasis on
quality and testing with less refactoring of our procedures.

At the heart of our development principles is an interchangeable flexible driver model complete
with expanded measurement uncertainties. Measurement based drivers provide the bases for
interchangeability and reuse of code; it is what allows our developers to take full advantage of
the principals of Rapid-Application-Development, while simultaneously providing higher quality
and shorter development cycles with minimal rework.

Software developers who read this paper, understand and incorporate the architecture into their
own best practices will see shorter development times and greater reuse of code, as well as
decreased support requirements and procedure rework.

mailto:MSchwartz@CalLabSolutions.com�

2011 NCSL International Workshop and Symposium

1. Introduction
In today’s competitive business environment, the name of the game is “Better, Cheaper, Faster.”
Calibration labs are no different, but they are faced with the additional challenge of calculating
measurement uncertainties on every standard and every UUT at every test point. If you have
implemented measurement uncertainties to this level, you know it is better, but it is also a time
consuming and costly endeavor.

Since we are a software company, we naturally looked to solve these problems in software.
There are several software packages out there that will help you calculate measurement
uncertainties on the fly--MET/CAL® is one such solution. But creating a calibration procedure
for each set of standards a customer might have is still labor intensive.

After many years of aggravation, we decided to incorporate the principles of OOP (Object
Oriented Programming) into our MET/CAL® procedure development. Though MET/CAL® is
not natively an OOP Language, we found by applying some specific design patterns we could
drastically decrease our support burden. Now we are able to support and maintain a library of
procedures covering 853 of the more complex instruments, with a relatively small programming
staff (i.e. “Better, Cheaper, Faster!”).

2. Background
In short, Object Oriented Programming (OOP) is a programing paradigm; it changes how we
think of software and its individual elements. The idea is to think of every element in your
software as “Objects” – data structures consisting of data fields and methods together with their
interactions. Then allow those objects to interact with each other based on a defined set of rules,
thus allowing for advanced programming techniques and features such as data abstraction,
encapsulation, messaging, modularity, polymorphism, and inheritance.

OOP will allow the programmer to create a simple abstract top level layer of code that interfaces
with the lower levels, (i.e. the objects) who become more specific and sort out the exact details.
If you think of an Object as a wrapper containing data and functionality, you allow objects to do
some of the work for you. The top level programmer does not need to know the details of how
the Object is implemented--only the interface by which his is allowed to use the Object.

Object Oriented Programming has several design patterns, but in this example we are only going
to focus on the Abstract Class Pattern, the intent of which is to provide an interface for creating
families of related or dependent objects without specifying their concrete class or
implementation (as defined by the Gang of Four) [1]. This design pattern has all the basic
elements required to design software with interchangeable modules. Its design provides a proven
methodology for writing interchangeable sections of code. Imbedded in the pattern is the ability
to pick and choose the specific code to be used at a later point in time. The developer writing the
top level code must conform to a standardized interface, while the lower levels of code (i.e.
interchangeable objects) are tasked with the specific implementations as required by the object’s
interface.

2011 NCSL International Workshop and Symposium

MET/CAL®, as you know, is not an Object Oriented Programming language, instead it is high
level scripting language written specifically for metrology and the controlling of instrumentation.
By design, MET/CAL® simplifies the process of creating an automated test script for a novice
programmer. But just because the MET/CAL® complier is not able to natively implement OOP,
that does not mean, we programmers can structure programs in a fashion to take advantage of
OOP.

3. Example MET/CAL® Procedure
In order to keep things simple in the provided examples, we will focus more on the concepts of
the architecture instead of the specific implementations, by demonstrating our OOP
implementation of Source.Volt.DC. In this example, we will demonstrate how to implement an
Abstract Class Factory pattern using MET/CAL® and how we changed our programming
methodologies from a standard specific programming model to an Object programming model
using the Source.Volts.DC interface. Subsequently, we will also show how we moved the
specific knowledge of the exact standards being used to a sub procedure, containing error
checking, command and programming calls and associated measurement uncertainty calculations
for the standards being used.

To start, let’s take a typical test point from a MET/CAL® procedure testing 1 Volt DC on a
DMM:

Example 1. Sample Test Point 1.

Most MET/CAL® programmers who wanted to change the standards on this test point would do
so by simply creating a whole new procedure by making changes and then saving the procedure
(one each for each standard they wanted to support). If they wanted to test this UUT with the
following standards (5500, 5520, 5700 or 5720) they would have 4 copies of the exact same
procedure. And in the end, they would now have several procedures they needed to support.

As programmers, we have to limit the amount of code we write, since every line of code we
write is a line of code we have to debug and support. Less code means less work, and more
importantly, less re-work. If we have four or more procedures we have to maintain and need to
make a change to the procedure--such as a test specification change--we have to change it in all
four procedures. Over time, this adds up, so soon we are spending more time supporting
procedures than we are writing them.

Our objective for Example 2 was to make any standard capable of generating 1 Volts DC a drop-
in replacement for the Fluke 5520. To do this, we had to create a programming standard
defining the variables we passed into a Source.Volts.DC driver and the parameters we received

#===== Sample Test Point 1 ============
 4.001 5520 1.0000V S 2W
 4.002 TARGET -m
 4.003 IEEE Read?[i]
 4.004 MEMCX V 0.0001U

2011 NCSL International Workshop and Symposium

back, then replace the 4.001 line using the 5520 FSC with something more abstract. In this case,
our only requirement is that the standard must be able to produce 1 Volt DC two wire.

Example 2. Sample Test Point 2.

By removing the specificity of the Fluke 5520 call and replacing it with Source.Volts.DC, we are
now able to use any standard that supports a Source.Volts.DC interface. This change to the
procedure design allows us to have a single test point procedure we have to support, independent
of the specific standards used. If the manufacturer were to change the test points or test limits,
we only have one procedure we need to update.

In the Test Point 2 sample code, we have removed the 5520 FSC and inserted an abstract
command in S[30] that specifies we want to Source.Volts.DC with Volts = 1 V. At this point,
we have not specified a particular standard, only the parameters we require. Then we call a sub
procedure “My Config Sub” that implements an Abstract Class Factory pattern and is
responsible for choosing the specific Source.Volts.DC driver sub.

Another thing to note is when we removed the specific FSC call to the Fluke 5520, we also
introduced some additional unknowns. In the Sample Test Point 1, we knew the Fluke 5520
would output 1 Volt DC with uncertainties based on the interval set in the MET/TRACK®
database, though now, because we requested 1V DC to the Source.Volts.DC driver, the exact
value and associated uncertainties are unknown and we have to accommodate that unknown in
the procedure.

Next, in the “My Config Sub Sample Code” (Example 3), we are able to take the commands
found in S[30] and select the a specific Driver. In this example, we are still using a Fluke 5520A,
but now the procedure can be quickly changed to any other standard that supports the
Source.Volts.DC interface. The programmer only needs to change the connection message on
line 4.007 and the driver call on line 4.011, thus making it easier to support multiple standards
without a large support burden.

#===== Sample Test Point 2 ============
 4.001 MATH S[30]="Source.Volts.DC Volts= 1"
 4.002 CALL My Config Sub
 4.003 MATH L[1]=Fld(S[31],2,"VoltsUnc=")
 4.003 MATH MEM=Fld(S[31],2,"Volts=")
 4.003 TSET UUT_Res= 0.0001
 4.004 ACC V L1U
 4.005 TARGET -m
 4.006 IEEE Read?[i]
 4.007 MEMCX V 0.0001U

2011 NCSL International Workshop and Symposium

Example 3. My Config Sub Sample Code.

At first it may appear all we have accomplished is taking 4 lines of code and spreading it across
3 sub procedures, only to increase the procedures complexity. But as you study the code, what
we have accomplished is the transformation of 5520 specific procedure to a configuration
management solution. Instead of supporting several individual procedures each with different
standards, now we are supporting only one procedure with an unlimited number of possible
configurations, all utilizing a set of interchangeable drivers. All a user needs is the correct “My
Config” file for his standards.

4. CLSD-Driver Model
The core principles of these OOP/interchangeable drivers have served us well, allowing huge
flexibility in standards, adapting to customers’ specific requirements, and the ability support
complex standards before FSC are available.

Over the years, as our programming standards have evolved, we have learned a few valuable
lessons. The most important of them is that you have to have a well-documented programming
standard. It is imperative that all the developers in our company be on the same sheet of music.
We must all be able to generate the same quality of code, all of our drivers must conform to a
standard and all of our procedures be writing with interchangeability in mind.

We started by creating an I/O command architecture that all UUT procedures and drivers must
implement. This becomes the contract between the calling procedure and the driver, so it must
be implemented exactly the same in every instance.

Under the driver contract, every driver must support the following commands:
 Name – Returns the Name of the STD and Connection Point
 Setup – Performs any required Setup / Configuration Tasks
 Reset – Resets the Standard(s)

#====== My Config Sub Sample Code ===
 4.001 LABEL VoltsDC
 4.002 JMPL VoltsDC_Conn Find(S[30],"Connect",1)>0
 4.003 JMPL VoltsDC_Source Find(S[30],"Source.Volts.DC",1)>0
 4.004 DISP Error Calling Sub
 4.005 END
#==
 4.006 LABEL VoltsDC_Conn
 4.007 DISP Connect the Fluke 5520 to the UUT as Follows;
 4.007 DISP [32] NORMAL HI <-----> V
 4.007 DISP [32] NORMAL LO <-----> COM
 4.008 END
#==
 4.009 LABEL VoltsDC_Source
 4.010 CALL CLSD-Source.Volts.DC (5520A Normal)
 4.011 END

2011 NCSL International Workshop and Symposium

 OutputOff – Turns the Output Off (Implemented on Sources Only)
 <Metrology Method> – Source.Volts.DC in this example

Every driver will support one or more metrology methods. It is the driver’s responsibility to
carry out the commands given, or present an error to the operator detailing why it is unable to
carry out the task. It is the driver’s responsibility to know its specifics, and adhere to the
command interface/contract with the calling procedure.

Error handling is one of the most important tasks of the driver sub. Once the input parameters
have been parsed out of the command string in S[30], they have to be error and range checked to
insure the standard is able to perform the task. Then, if possible, the driver needs to be able to
error check the standards to insure no additional errors have accorded, such as overvoltage or
unleveled instrumentation error.

Once the driver has performed its entire list of tasks, it then calculates the measurement
uncertainty and reports them back to the calling procedure. How it calculates its uncertainties is
specific to its implementation and the standards being use, as long as the driver adheres to its
defined interface/contract with the calling procedure.

 Driver Standard
CLSD-Source.Volts.DC (5500A Normal) Fluke 5500 Volts Connection Post
CLSD-Source.Volts.DC (5570A Normal) Fluke 5520 Volts Connection Post
CLSD-Source.Volts.DC (5700A Normal) Fluke 5700 Volts Connection Post
CLSD-Source.Volts.DC (5720A Normal) Fluke 5720 Volts Connection Post

Table 1. Examples of interchangeable drivers with this paper.

5. Polymorphism
Now we have a problem. We are satisfied with all but one of the standards we have listed in
Table 1; the Fluke 5500A is not accurate enough to source 1V DC for a test point with +/- 100uV
test limit, but we need to be able to use the 5500A on this UUT in the field. We know we can
monitor the output with a more accurate meter, but we don’t want to completely re-write this
procedure. Welcome Polymorphism!

Polymorphism is a word you certainly don’t hear every day, but it holds the answer to our
problem. In OOP we can have vastly different implementations of Source.Volts.DC and the
calling procedure does not have to worry about specifics. By completely passing the
responsibility to the sub procedure (i.e. the object), we also pass the responsibility of the
specifics. This allows us to create and implement Source.Volts.DC in any manner we can
fathom. The possibilities are limit less.

So now we need to create 1 Volt DC with a 5500 and monitor it with an Agilent/HP 3458A
(Table 2). In doing so, we are going to completely change our test methodology. We will source
the voltage from the calibrator, measure it with the 3458A, slightly correct the output so we are

2011 NCSL International Workshop and Symposium

close to 1.0000V DC and report back the uncertainties to the calling procedure. Best of all, this
all can be handled in the driver sub, without having to update the calling procedure.

Driver Standard
CLSD-Source.Volts.DC (5500 Normal & 3458A) Fluke 5500 Volts Connection Post monitored and

corrected with an HP/Agilent 3458A.

 Table 2. Examples demonstrating Polymorphism drivers with this paper.

6. Measurement Uncertainties
This paper is an expansion on the paper “Implementing A2LA's new Budget Requirements for
Electrical and RF Uncertainties in Fluke MET/CAL® Procedures,” presented last year at NCSLI
[2]. So the specifics of how we are mapping the U values and calculating out the expanded
measurements uncertainties are explained in more detail in that paper.

I want to specifically point out one of the distinct advantages of using an OOP driver based
procedure design model is the ability to encapsulate measurement uncertainties and process
inside each driver. The process of encapsulation is another important part of OOP, allowing us
to not only interchange standards, but also associate the measurement uncertainties with each
specific standard. Since the CLSD-Source.Volts.DC (5500A Normal) sub is shared, when we
update its measurement uncertainties, we do so for all procedures calling it—again, minimizing
the code base needed to support.

Because we are able to store process in the drivers underlying code, this allows us to tightly
couple the process with the measurement uncertainties. We can now handle huge variances in
the process, such as monitoring the output and auto leveling the output based on the DMM’s
reading, with seamless integration with the calling procedure.

By comparing Examples 4 and 5 below, we are not only able to change standards, but we can
also change the procedure methodology and associated measurement uncertainties. In Example
4, a Source-to-Measure test methodology is used, where the 5500 is the calibrated source and the
UUT was reading its value. Then in example 5, we changed to a 5500 monitored by a 3458A so
the test methodology becomes a Measure-to-Measure. This process must report back the
uncertainties of the applied value compared to nominal (Value= and Unc=), as well as the value
measured by the Agilent/HP 3458A and its associated measurement uncertainties.

2011 NCSL International Workshop and Symposium

Example 4. Source.Volts.DC 5520 Normal.

Example 5. Source.Volts.DC 3458A 5520A Normal.

#====== Source.Volts.DC 3458A 5520A Normal =============================
 1.045 MATH L[11]=ACCV("HP 3458A","Volts E", MEM)
 1.046 MATH S[31]= " Value= " & MEM
 1.047 MATH S[31]=S[31]& " Unc= " & L[11]
 1.048 MATH S[31]=S[31]& " Volts= " & L[1]
 1.049 MATH S[31]=S[31]& " VoltsUnc= " & (L[11]+(MEM-L[1]))
#---------------------------------
Standard Resolution
 1.050 IF MEM<1.2
 1.051 MATH L[31] = 10e-9
 1.052 ELSEIF MEM<12
 1.053 MATH L[31] = 100e-9
 1.054 ELSEIF MEM<120
 1.055 MATH L[31] = 1e-6
 1.056 ELSE
 1.057 MATH L[31] = 10e-6
 1.058 ENDIF
 1.059 MATH L[31]=L[31]/2/Sqrt(3)
 1.060 VSET U7 = [L31]
Standard Traceability (Assuming 4 to 1 or Better)
 1.061 MATH L[31]=L[1]*.25
 1.062 VSET U5 = [L31]

#====== Source.Volts.DC 5520 Normal =====================================
Calculate the Uncertainties
 1.028 MATH L[11]=ACCV("Fluke 5520A","Volts", MEM)
 1.029 MATH S[31]= " Value= " & MEM
 1.030 MATH S[31]=S[31]& " Unc= " & L[11]
 1.031 MATH S[31]=S[31]& " Volts= " & MEM
 1.032 MATH S[31]=S[31]& " VoltsUnc= " &L[11]
Standard Resolution
 1.033 IF L[1]<330e-3
 1.034 MATH L[31] = .1e-6
 1.035 ELSEIF L[1]<3.30
 1.036 MATH L[31] = 1e-6
 1.037 ELSEIF L[1]<33.0
 1.038 MATH L[31] = 10e-6
 1.039 ELSEIF L[1]<330
 1.040 MATH L[31] = 100e-6
 1.041 ELSE
 1.042 MATH L[31] = 1000e-6
 1.043 ENDIF
 1.044 MATH L[31]=L[31]/2/Sqrt(3)
 1.045 TSET U7 = [L31]
Standard Traceability (Assuming 4 to 1 or Better)
 1.046 MATH L[31]=L[11]*.25
 1.047 TSET U7 = [L31]

2011 NCSL International Workshop and Symposium

7. Conclusion
Though MET/CAL® is not by design an Object Oriented Programming Language like Microsoft
.Net and Java, we can still take full advantage of the architectural principles, design patterns and
other features of OOP to write more robust, innovative and fault tolerant procedures. By
learning and implementing OOP techniques, it has allowed us, as a company, to support more
procedures with a smaller staff and at the same time produce more robust procedures. Besides
the examples given here, a packet of samples can be found online at
http://www.callabsolutions.com.

8. References
1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, p. 87, 1995.
2. M. Schwartz and K. Haynes, “Implementing A2LA's new Budget Requirements for

Electrical and RF Uncertainties in Fluke MET/CAL® Procedures,” NCSL International 2011
Workshop and Symposium.

Other recommended resources for further information:

Design Patterns Explained, by Alan Shalloway and James R. Trott (2005).
Lean Software Development: An Agile Toolkit, by Mary and Tom Poppendieck (2003).
Head First Design Patterns, by Eric Freemand and Elisabeth Freemand (2004).

