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Learning Objectives:   Programmers, and especially MET/CAL® programmers, will gain 
valuable knowledge and insight on how to structure their procedures to provide easier 
interchangeability of standards and incorporate measurement uncertainties.   This driver based 
model incorporates the principals of object oriented programming, and facilitates faster 
procedure development, greater flexibility in standards, with lower support overhead.   

Abstract:   Writing one or two automated procedures is easy; however, automating an entire 
calibration lab is not an easy undertaking.  Even with today’s software tools built specifically for 
metrology, a significant effort must to be put into designing an architecture that will foster the 
reuse of code, flexibility of standards and incorporate expanded measurement uncertainties.  
Companies and/or developers who skip this crucial step are quickly overwhelmed with rework 
that ultimately hinders long-term productivity.    

After more than 15 years of MET/CAL® procedure development trial and error, we believe we 
have found the balance between productivity and architecture.  This paper outlines the structure 
and development methodologies we use to write more robust code, with a greater emphasis on 
quality and testing with less refactoring of our procedures.   

At the heart of our development principles is an interchangeable flexible driver model complete 
with expanded measurement uncertainties.  Measurement based drivers provide the bases for 
interchangeability and reuse of code; it is what allows our developers to take full advantage of 
the principals of Rapid-Application-Development, while simultaneously providing higher quality 
and shorter development cycles with minimal rework.     

Software developers who read this paper, understand and incorporate the architecture into their 
own best practices will see shorter development times and greater reuse of code, as well as 
decreased support requirements and procedure rework. 
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1. Introduction 
In today’s competitive business environment, the name of the game is “Better, Cheaper, Faster.”  
Calibration labs are no different, but they are faced with the additional challenge of calculating 
measurement uncertainties on every standard and every UUT at every test point.   If you have 
implemented measurement uncertainties to this level, you know it is better, but it is also a time 
consuming and costly endeavor.   

Since we are a software company, we naturally looked to solve these problems in software. 
There are several software packages out there that will help you calculate measurement 
uncertainties on the fly--MET/CAL® is one such solution.  But creating a calibration procedure 
for each set of standards a customer might have is still labor intensive.   

After many years of aggravation, we decided to incorporate the principles of OOP (Object 
Oriented Programming) into our MET/CAL® procedure development.  Though MET/CAL® is 
not natively an OOP Language, we found by applying some specific design patterns we could 
drastically decrease our support burden. Now we are able to support and maintain a library of 
procedures covering 853 of the more complex instruments, with a relatively small programming 
staff (i.e. “Better, Cheaper, Faster!”). 

2. Background 
In short, Object Oriented Programming (OOP) is a programing paradigm; it changes how we 
think of software and its individual elements.  The idea is to think of every element in your 
software as “Objects” – data structures consisting of data fields and methods together with their 
interactions.  Then allow those objects to interact with each other based on a defined set of rules,  
thus allowing for advanced programming techniques and features such as data abstraction, 
encapsulation, messaging, modularity, polymorphism, and inheritance. 

OOP will allow the programmer to create a simple abstract top level layer of code that interfaces 
with the lower levels, (i.e. the objects) who become more specific and sort out the exact details.  
If you think of an Object as a wrapper containing data and functionality, you allow objects to do 
some of the work for you. The top level programmer does not need to know the details of how 
the Object is implemented--only the interface by which his is allowed to use the Object.  

Object Oriented Programming has several design patterns, but in this example we are only going 
to focus on the Abstract Class Pattern, the intent of which is to provide an interface for creating 
families of related or dependent objects without specifying their concrete class or 
implementation (as defined by the Gang of  Four) [1]. This design pattern has all the basic 
elements required to design software with interchangeable modules.  Its design provides a proven 
methodology for writing interchangeable sections of code.  Imbedded in the pattern is the ability 
to pick and choose the specific code to be used at a later point in time.  The developer writing the 
top level code must conform to a standardized interface, while the lower levels of code (i.e. 
interchangeable objects) are tasked with the specific implementations as required by the object’s 
interface.     
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MET/CAL®, as you know, is not an Object Oriented Programming language, instead it is high 
level scripting language written specifically for metrology and the controlling of instrumentation.   
By design, MET/CAL® simplifies the process of creating an automated test script for a novice 
programmer.  But just because the MET/CAL® complier is not able to natively implement OOP, 
that does not mean, we programmers can structure programs in a fashion to take advantage of 
OOP. 

3. Example MET/CAL® Procedure 
In order to keep things simple in the provided examples, we will focus more on the concepts of 
the architecture instead of the specific implementations, by demonstrating our OOP 
implementation of Source.Volt.DC.  In this example, we will demonstrate how to implement an 
Abstract Class Factory pattern using MET/CAL® and how we changed our programming 
methodologies from a standard specific programming model to an Object programming model 
using the Source.Volts.DC interface.  Subsequently, we will also show how we moved the 
specific knowledge of the exact standards being used to a sub procedure, containing error 
checking, command and programming calls and associated measurement uncertainty calculations 
for the standards being used.  

To start, let’s take a typical test point from a MET/CAL® procedure testing 1 Volt DC on a 
DMM: 

 

Example 1. Sample Test Point 1. 

Most MET/CAL® programmers who wanted to change the standards on this test point would do 
so by simply creating a whole new procedure by making changes and then saving the procedure 
(one each for each standard they wanted to support).  If they wanted to test this UUT with the 
following standards (5500, 5520, 5700 or 5720) they would have 4 copies of the exact same 
procedure.  And in the end, they would now have several procedures they needed to support.  

As programmers, we have to limit the amount of code we write, since every line of code we 
write is a line of code we have to debug and support.   Less code means less work, and more 
importantly, less re-work.  If we have four or more procedures we have to maintain and need to 
make a change to the procedure--such as a test specification change--we have to change it in all 
four procedures.  Over time, this adds up, so soon we are spending more time supporting 
procedures than we are writing them.  

Our objective for Example 2 was to make any standard capable of generating 1 Volts DC a drop-
in replacement for the Fluke 5520.  To do this, we had to create a programming standard 
defining the variables we passed into a Source.Volts.DC driver and the parameters we received 

#=====  Sample Test Point 1 ============  
  4.001  5520         1.0000V                                S  2W 
  4.002  TARGET       -m 
  4.003  IEEE         Read?[i] 
  4.004  MEMCX        V              0.0001U 
 



2011 NCSL International Workshop and Symposium 

back, then replace the 4.001 line using the 5520 FSC with something more abstract. In this case, 
our only requirement is that the standard must be able to produce 1 Volt DC two wire.  

 

Example 2. Sample Test Point 2. 

By removing the specificity of the Fluke 5520 call and replacing it with Source.Volts.DC, we are 
now able to use any standard that supports a Source.Volts.DC interface.  This change to the 
procedure design allows us to have a single test point procedure we have to support, independent 
of the specific standards used.  If the manufacturer were to change the test points or test limits, 
we only have one procedure we need to update.  

In the Test Point 2 sample code, we have removed the 5520 FSC and inserted an abstract 
command in S[30] that specifies we want to Source.Volts.DC with Volts = 1 V.  At this point, 
we have not specified a particular standard, only the parameters we require.  Then we call a sub 
procedure “My Config Sub” that implements an Abstract Class Factory pattern and is 
responsible for choosing the specific Source.Volts.DC driver sub.  

Another thing to note is when we removed the specific FSC call to the Fluke 5520, we also 
introduced some additional unknowns.  In the Sample Test Point 1, we knew the Fluke 5520 
would output 1 Volt DC with uncertainties based on the interval set in the MET/TRACK® 
database, though now, because we requested 1V DC to the Source.Volts.DC driver, the exact 
value and associated uncertainties are unknown and we have to accommodate that unknown in 
the procedure.   

Next, in the “My Config Sub Sample Code” (Example 3), we are able to take the commands 
found in S[30] and select the a specific Driver. In this example, we are still using a Fluke 5520A, 
but now the procedure can be quickly changed to any other standard that supports the 
Source.Volts.DC interface. The programmer only needs to change the connection message on 
line 4.007 and the driver call on line 4.011, thus making it easier to support multiple standards 
without a large support burden.    

# #===== Sample Test Point 2 ============  
  4.001  MATH         S[30]="Source.Volts.DC Volts= 1" 
  4.002  CALL         My Config Sub 
  4.003  MATH         L[1]=Fld(S[31],2,"VoltsUnc=") 
  4.003  MATH         MEM=Fld(S[31],2,"Volts=") 
  4.003  TSET         UUT_Res= 0.0001 
  4.004  ACC          V        L1U 
  4.005  TARGET       -m 
  4.006  IEEE         Read?[i] 
  4.007  MEMCX        V              0.0001U 
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Example 3. My Config Sub Sample Code. 

At first it may appear all we have accomplished is taking 4 lines of code and spreading it across 
3 sub procedures, only to increase the procedures complexity.  But as you study the code, what 
we have accomplished is the transformation of 5520 specific procedure to a configuration 
management solution.  Instead of supporting several individual procedures each with different 
standards, now we are supporting only one procedure with an unlimited number of possible 
configurations, all utilizing a set of interchangeable drivers.  All a user needs is the correct “My 
Config” file for his standards.     

4. CLSD-Driver Model 
The core principles of these OOP/interchangeable drivers have served us well, allowing huge 
flexibility in standards, adapting to customers’ specific requirements, and the ability support 
complex standards before FSC are available.   

Over the years, as our programming standards have evolved, we have learned a few valuable 
lessons. The most important of them is that you have to have a well-documented programming 
standard.  It is imperative that all the developers in our company be on the same sheet of music.  
We must all be able to generate the same quality of code, all of our drivers must conform to a 
standard and all of our procedures be writing with interchangeability in mind.  

We started by creating an I/O command architecture that all UUT procedures and drivers must 
implement.  This becomes the contract between the calling procedure and the driver, so it must 
be implemented exactly the same in every instance. 

Under the driver contract, every driver must support the following commands: 
 Name – Returns the Name of the STD and Connection Point 
 Setup – Performs any required Setup / Configuration Tasks 
 Reset – Resets the Standard(s) 

#====== My Config Sub Sample Code ========================================= 
  4.001  LABEL        VoltsDC 
  4.002  JMPL         VoltsDC_Conn      Find(S[30],"Connect",1)>0 
  4.003  JMPL         VoltsDC_Source    Find(S[30],"Source.Volts.DC",1)>0 
  4.004  DISP         Error Calling Sub 
  4.005  END 
#======================================== 
  4.006  LABEL        VoltsDC_Conn 
  4.007  DISP         Connect the Fluke 5520 to the UUT as Follows; 
  4.007  DISP         [32]  NORMAL HI <-----> V 
  4.007  DISP         [32]  NORMAL LO <-----> COM 
  4.008  END 
#======================================== 
  4.009  LABEL        VoltsDC_Source 
  4.010  CALL         CLSD-Source.Volts.DC                     (5520A Normal) 
  4.011  END 
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 OutputOff – Turns the Output Off (Implemented on Sources Only) 
 <Metrology Method> – Source.Volts.DC in this example 

Every driver will support one or more metrology methods.  It is the driver’s responsibility to 
carry out the commands given, or present an error to the operator detailing why it is unable to 
carry out the task.  It is the driver’s responsibility to know its specifics, and adhere to the 
command interface/contract with the calling procedure.  

Error handling is one of the most important tasks of the driver sub. Once the input parameters 
have been parsed out of the command string in S[30], they have to be error and range checked to 
insure the standard is able to perform the task.  Then, if possible, the driver needs to be able to 
error check the standards to insure no additional errors have accorded, such as overvoltage or 
unleveled instrumentation error.  

Once the driver has performed its entire list of tasks, it then calculates the measurement 
uncertainty and reports them back to the calling procedure.  How it calculates its uncertainties is 
specific to its implementation and the standards being use, as long as the driver adheres to its 
defined interface/contract with the calling procedure. 

 Driver Standard 
CLSD-Source.Volts.DC (5500A Normal) Fluke 5500 Volts Connection Post 
CLSD-Source.Volts.DC (5570A Normal) Fluke 5520 Volts Connection Post 
CLSD-Source.Volts.DC (5700A Normal) Fluke 5700 Volts Connection Post 
CLSD-Source.Volts.DC (5720A Normal) Fluke 5720 Volts Connection Post 

Table 1. Examples of interchangeable drivers with this paper. 

 
5. Polymorphism 
Now we have a problem.  We are satisfied with all but one of the standards we have listed in 
Table 1; the Fluke 5500A is not accurate enough to source 1V DC for a test point with +/- 100uV 
test limit, but we need to be able to use the 5500A on this UUT in the field. We know we can 
monitor the output with a more accurate meter, but we don’t want to completely re-write this 
procedure. Welcome Polymorphism! 

Polymorphism is a word you certainly don’t hear every day, but it holds the answer to our 
problem.  In OOP we can have vastly different implementations of Source.Volts.DC and the 
calling procedure does not have to worry about specifics.  By completely passing the 
responsibility to the sub procedure (i.e. the object), we also pass the responsibility of the 
specifics.  This allows us to create and implement Source.Volts.DC in any manner we can 
fathom. The possibilities are limit less.   

So now we need to create 1 Volt DC with a 5500 and monitor it with an Agilent/HP 3458A 
(Table 2).  In doing so, we are going to completely change our test methodology.  We will source 
the voltage from the calibrator, measure it with the 3458A, slightly correct the output so we are 
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close to 1.0000V DC and report back the uncertainties to the calling procedure.  Best of all, this 
all can be handled in the driver sub, without having to update the calling procedure. 

Driver Standard 
CLSD-Source.Volts.DC (5500 Normal & 3458A)  Fluke 5500 Volts Connection Post monitored and 

corrected with an HP/Agilent 3458A.  

 Table 2. Examples demonstrating Polymorphism drivers with this paper. 

 
6. Measurement Uncertainties 
This paper is an expansion on the paper “Implementing A2LA's new Budget Requirements for 
Electrical and RF Uncertainties in Fluke MET/CAL® Procedures,” presented last year at NCSLI 
[2].  So the specifics of how we are mapping the U values and calculating out the expanded 
measurements uncertainties are explained in more detail in that paper.    

I want to specifically point out one of the distinct advantages of using an OOP driver based 
procedure design model is the ability to encapsulate measurement uncertainties and process 
inside each driver.   The process of encapsulation is another important part of OOP, allowing us 
to not only interchange standards, but also associate the measurement uncertainties with each 
specific standard.  Since the CLSD-Source.Volts.DC (5500A Normal) sub is shared, when we 
update its measurement uncertainties, we do so for all procedures calling it—again, minimizing 
the code base needed to support.  

Because we are able to store process in the drivers underlying code, this allows us to tightly 
couple the process with the measurement uncertainties.  We can now handle huge variances in 
the process, such as monitoring the output and auto leveling the output based on the DMM’s 
reading, with seamless integration with the calling procedure.   

By comparing Examples 4 and 5 below, we are not only able to change standards, but we can 
also change the procedure methodology and associated measurement uncertainties. In Example 
4, a Source-to-Measure test methodology is used, where the 5500 is the calibrated source and the 
UUT was reading its value. Then in example 5, we changed to a 5500 monitored by a 3458A so 
the test methodology becomes a Measure-to-Measure. This process must report back the 
uncertainties of the applied value compared to nominal (Value= and Unc=), as well as the value 
measured by the Agilent/HP 3458A and its associated measurement uncertainties. 
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Example 4. Source.Volts.DC 5520 Normal. 

 

Example 5. Source.Volts.DC 3458A 5520A Normal. 

#====== Source.Volts.DC 3458A 5520A Normal ============================= 
  1.045  MATH         L[11]=ACCV("HP 3458A","Volts E", MEM) 
  1.046  MATH         S[31]=       " Value= " & MEM 
  1.047  MATH         S[31]=S[31]& " Unc= " & L[11] 
  1.048  MATH         S[31]=S[31]& " Volts= " & L[1] 
  1.049  MATH         S[31]=S[31]& " VoltsUnc= " & (L[11]+(MEM-L[1])) 
#--------------------------------- 
# Standard Resolution 
  1.050  IF           MEM<1.2 
  1.051  MATH         L[31] = 10e-9 
  1.052  ELSEIF       MEM<12 
  1.053  MATH         L[31] = 100e-9 
  1.054  ELSEIF       MEM<120 
  1.055  MATH         L[31] = 1e-6 
  1.056  ELSE 
  1.057  MATH         L[31] = 10e-6 
  1.058  ENDIF 
  1.059  MATH         L[31]=L[31]/2/Sqrt(3) 
  1.060  VSET         U7 = [L31] 
# Standard Traceability (Assuming 4 to 1 or Better) 
  1.061  MATH         L[31]=L[1]*.25 
  1.062  VSET         U5 = [L31] 

#====== Source.Volts.DC 5520 Normal ===================================== 
# Calculate the Uncertainties 
  1.028  MATH         L[11]=ACCV("Fluke 5520A","Volts", MEM) 
  1.029  MATH         S[31]=       " Value= " & MEM 
  1.030  MATH         S[31]=S[31]& " Unc= " & L[11] 
  1.031  MATH         S[31]=S[31]& " Volts= " & MEM 
  1.032  MATH         S[31]=S[31]& " VoltsUnc= " &L[11] 
# Standard Resolution 
  1.033  IF           L[1]<330e-3 
  1.034  MATH         L[31] = .1e-6 
  1.035  ELSEIF       L[1]<3.30 
  1.036  MATH         L[31] = 1e-6 
  1.037  ELSEIF       L[1]<33.0 
  1.038  MATH         L[31] = 10e-6 
  1.039  ELSEIF       L[1]<330 
  1.040  MATH         L[31] = 100e-6 
  1.041  ELSE 
  1.042  MATH         L[31] = 1000e-6 
  1.043  ENDIF 
  1.044  MATH         L[31]=L[31]/2/Sqrt(3) 
  1.045  TSET         U7 = [L31] 
# Standard Traceability (Assuming 4 to 1 or Better) 
  1.046  MATH         L[31]=L[11]*.25 
  1.047  TSET         U7 = [L31] 
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7. Conclusion 
Though MET/CAL® is not by design an Object Oriented Programming Language like Microsoft 
.Net and Java, we can still take full advantage of the architectural principles, design patterns and 
other features of OOP to write more robust, innovative and fault tolerant procedures.  By 
learning and implementing OOP techniques, it has allowed us, as a company, to support more 
procedures with a smaller staff and at the same time produce more robust procedures. Besides 
the examples given here, a packet of samples can be found online at 
http://www.callabsolutions.com. 
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